61 research outputs found

    Transfer of a Polaritonic Qubit through a Coupled Cavity Array

    Full text link
    We demonstrate a scheme for quantum communication between the ends of an array of coupled cavities. Each cavity is doped with a single two level system (atoms or quantum dots) and the detuning of the atomic level spacing and photonic frequency is appropriately tuned to achieve photon blockade in the array. We show that in such a regime, the array can simulate a dual rail quantum state transfer protocol where the arrival of quantum information at the receiving cavity is heralded through a fluorescence measurement. Communication is also possible between any pair of cavities of a network of connected cavities.Comment: Contribution to Special Issue in Journal of Modern Optics celebrating the 60th birthday of Peter L. Knigh

    Topological data analysis and machine learning

    Full text link
    Topological data analysis refers to approaches for systematically and reliably computing abstract ``shapes'' of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise yet (we hope) comprehensive review of applications of topological data analysis to physics and machine learning problems in physics including the detection of phase transitions. We finish with a preview of anticipated directions for future research.Comment: Invited review, 15 pages, 7 figures, 117 reference

    Photonic band structure design using persistent homology

    Full text link
    The machine learning technique of persistent homology classifies complex systems or datasets by computing their topological features over a range of characteristic scales. There is growing interest in applying persistent homology to characterize physical systems such as spin models and multiqubit entangled states. Here we propose persistent homology as a tool for characterizing and optimizing band structures of periodic photonic media. Using the honeycomb photonic lattice Haldane model as an example, we show how persistent homology is able to reliably classify a variety of band structures falling outside the usual paradigms of topological band theory, including "moat band" and multi-valley dispersion relations, and thereby control the properties of quantum emitters embedded in the lattice. The method is promising for the automated design of more complex systems such as photonic crystals and Moire superlattices.Comment: Published version; 9 pages, 7 figure

    Pinning quantum phase transition of photons in a hollow-core fiber

    Full text link
    We show that a pinning quantum phase transition for photons could be observed in a hollow-core one-dimensional fiber loaded with a cold atomic gas. Utilizing the strong light confinement in the fiber, a range of different strongly correlated polaritonic and photonic states, corresponding to both strong and weak interactions can be created and probed. The key ingredient is the creation of a tunable effective lattice potential acting on the interacting polaritonic gas which is possible by slightly modulating the atomic density. We analyze the relevant phase diagram corresponding to the realizable Bose-Hubbard (weak) and sine-Gordon (strong) interacting regimes and conclude by describing the measurement process. The latter consists of mapping the stationary excitations to propagating light pulses whose correlations can be efficiently probed once they exit the fiber using available optical technologiesComment: 4 pages, 4 figures. Comments welcome

    Simulation of high-spin Heisenberg models in coupled cavities

    Full text link
    We propose a scheme to realize the Heisenberg model of any spin in an arbitrary array of coupled cavities. Our scheme is based on a fixed number of atoms confined in each cavity and collectively applied constant laser fields, and is in a regime where both atomic and cavity excitations are suppressed. It is shown that as well as optically controlling the effective spin Hamiltonian, it is also possible to engineer the magnitude of the spin. Our scheme would open up an unprecedented way to simulate otherwise intractable high-spin problems in many-body physics.Comment: 4 pages, 2 figure
    corecore